资源类型

期刊论文 259

会议视频 1

年份

2023 15

2022 18

2021 13

2020 17

2019 15

2018 12

2017 15

2016 8

2015 9

2014 11

2013 10

2012 6

2011 18

2010 29

2009 11

2008 16

2007 8

2006 7

2005 5

2004 4

展开 ︾

关键词

热电联产 3

热释放速率 3

多联产 2

扬矿管 2

数学模型 2

水化热 2

深海采矿 2

6016 合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

Cu(Inx 1

Ga1–x)Se2 1

IF钢 1

Inconel 718合金 1

K型钢管混凝土节点 1

Laves相 1

M23C6 碳化物 1

McCormick包络 1

展开 ︾

检索范围:

排序: 展示方式:

A review of recent experimental investigations and theoretical analyses for pulsating heat pipes

Xin TANG, Lili SHA, Hua ZHANG, Yonglin JU

《能源前沿(英文)》 2013年 第7卷 第2期   页码 161-173 doi: 10.1007/s11708-013-0250-1

摘要: Pulsating heat pipe (PHP), or oscillating heat pipe (OHP), a novel type of highly efficient heat transfer component, has been widely applied in many fields, such as in space-borne two-phase thermal control systems, in the cooling of electronic devices and in energy-saving technology, etc. In the present paper, the characteristics and working principles of the PHPs are introduced and the current researches in the field are described from the viewpoint of experimental tests, theoretical analyses as well as practical applications. Besides, it is found that the state-of-the-art experimental investigations on the PHPs are mainly focused on the flow visualization and the applications of nanofluids and other functional fluids, aiming at enhancing the heat transfer performance of the PHPs. In addition, it is also pointed out that the present theoretical analyses of the PHP are restricted by further development of two-phase flow theories, and are concentrated in the non-linear analyses. Numerical simulations are expected to be another research focus, in particular of the combination of the nanofluids and functional fluids.

关键词: pulsating heat pipe (PHP)     flow visualization     nanofluids     nonlinear analysis    

Experimental investigations on operating characteristics of a closed loop pulsating heat pipe

Yu WANG

《能源前沿(英文)》 2015年 第9卷 第2期   页码 134-141 doi: 10.1007/s11708-015-0354-x

摘要: The operating mechanism of the pulsating heat pipe (PHP) is not well understood and the present technology cannot predict required design parameters for a given task. The aim of research work presented in this paper is to better understand the operation regimes of the PHP through experimental investigations. A series of experiments were conducted on a closed loop PHP with 5 turns made of copper capillary tube of 2 mm in inner diameter. Two different working fluids viz. ethanol and acetone were employed. The operating characteristics were studied for the variation of heat input, filling ratio (FR) and inclination angle of the tested device. The results strongly demonstrate the effect of the filling ratio of the working fluid on the operational stability and heat transfer capability of the device. Important insight into the operational characteristics of PHP has been obtained.

关键词: closed loop pulsating heat pipe     thermal performance     operation limit     thermography    

Major applications of heat pipe and its advances coupled with sorption system: a review

Yang YU, Guoliang AN, Liwei WANG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 172-184 doi: 10.1007/s11708-019-0610-6

摘要: Heat pipe utilizes continuous phase change process within a small temperature drop to achieve high thermal conductivity. For decades, heat pipes coupled with novel emerging technologies and methods (using nanofluids and self-rewetting fluids) have been highly appreciated, along with which a number of advances have taken place. In addition to some typical applications of thermal control and heat recovery, the heat pipe technology combined with the sorption technology could efficiently improve the heat and mass transfer performance of sorption systems for heating, cooling and cogeneration. However, almost all existing studies on this combination or integration have not concentrated on the principle of the sorption technology with acting as the heat pipe technology for continuous heat transfer. This paper presents an overview of the emerging working fluids, the major applications of heat pipe, and the advances in heat pipe type sorption system. Besides, the ongoing and perspectives of the solid sorption heat pipe are presented, expecting to serve as useful guides for further investigations and new research potentials.

关键词: heat pipe     sorption system     heat transfer     solid sorption heat pipe    

Heat-spreading analysis of a heat sink base embedded with a heat pipe

B. V. BORGMEYER, H. B. MA,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 143-148 doi: 10.1007/s11708-010-0013-1

摘要: A simplified model predicting the heat transfer performance of a heat sink base with a high thermal conductivity was developed. Numerical analysis was performed using the commercial software FLUENT. The investigation indicates that for heat sink bases with a high effective thermal conductivity, such as the base embedded with a typical heat pipe, the entire heat sink can be modeled as a flat plate with a uniform temperature and an effective convection heat transfer coefficient. This simplified model can be used to determine the heat transfer performance of a heat sink embedded with a typical heat pipe or vapor chamber.

关键词: heat pipe     heat sink     microprocessor heat removal    

A space power system of free piston Stirling generator based on potassium heat pipe

Mingqiang LIN, Jian MOU, Chunyun CHI, Guotong HONG, Panhe GE, Gu HU

《能源前沿(英文)》 2020年 第14卷 第1期   页码 1-10 doi: 10.1007/s11708-019-0655-6

摘要: The power system of a free piston Stirling generator (FPSG) based on potassium heat pipes has been developed in this paper. Thanks to the advantages of long life, high reliability, and high overall thermal efficiency, the FPSG is a promising candidate for nuclear energy, especially in space exploration. In this paper, the recent progress of FPSG based on nuclear reactor for space use was briefly reviewed. A novel FPSG weighted only 4.2 kg was designed, and one dimensional thermodynamic modeling of the FPSG using Sage software was performed to estimate its performance. The experiment results indicated that this FPSG could provide 142.4 W at a thermal-to-electric efficiency of nearly 17.4%. Besides, the power system integrated with four FPSGs and potassium heat pipes was performed and the single machine failure test was conducted. The results show that this system could provide an electrical power of 300 W at an overall thermal efficiency of 7.3%. Thus, it is concluded that this power system is feasible and will have a great prospect for future applications.

关键词: free piston Stirling generator (FPSG)     potassium heat pipe     power system     energy conversion    

Design and analyses of open-ended pipe piles in cohesionless soils

Yuan GUO,Xiong (Bill) YU

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 22-29 doi: 10.1007/s11709-016-0314-5

摘要: Large open-ended pipe pile has been found to be advantageous for use in transportation projects. The current design method, however, is not adequately developed. To close this practice gap, this paper first summarized different design methods for open-ended pipe piles in sandy soils. A major factor for all the design codes is to properly account for the formation and effects of soil plug. The comparison indicates that there is a large variation in the base capacity evaluation among different methods due to the complex behaviors of soil plug. To close the knowledge gap, discrete element method (DEM) was used to simulate the soil plugging process and provide insight on the plugging mechanism. The simulation results show that the arching effect significantly increases the internal unit shear resistance along pipe piles. The porosity distribution and particle contact force distribution from DEM model indicate a large stress concentration occurs at the bottom of the soil plug. Besides, nearly 90% of the plug resistance is provided by the bottom half portion of the soil column. The soil-pile friction coefficient has a significant effect on the magnitude of plug resistance, with the major transition occurred for friction coefficient between 0.3 and 0.4.

关键词: open-ended pipe pile     soil plug     DEM     base capacity    

Group-based multiple pipe routing method for aero-engine focusing on parallel layout

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 798-813 doi: 10.1007/s11465-021-0645-3

摘要: External pipe routing for aero-engine in limited three-dimensional space is a typical nondeterministic polynomial hard problem, where the parallel layout of pipes plays an important role in improving the utilization of layout space, facilitating pipe assembly, and maintenance. This paper presents an automatic multiple pipe routing method for aero-engine that focuses on parallel layout. The compressed visibility graph construction algorithm is proposed first to determine rapidly the rough path and interference relationship of the pipes to be routed. Based on these rough paths, the information of pipe grouping and sequencing are obtained according to the difference degree and interference degree, respectively. Subsequently, a coevolutionary improved differential evolution algorithm, which adopts the coevolutionary strategy, is used to solve multiple pipe layout optimization problem. By using this algorithm, pipes in the same group share the layout space information with one another, and the optimal layout solution of pipes in this group can be obtained in the same evolutionary progress. Furthermore, to eliminate the minor angle deviation of parallel pipes that would cause assembly stress in actual assembly, an accurate parallelization processing method based on the simulated annealing algorithm is proposed. Finally, the simulation results on an aero-engine demonstrate the feasibility and effectiveness of the proposed method.

关键词: multiple pipe routing     optimization algorithm     aero-engine     pipe grouping     parallel layout    

基于平板热管的新型直膨式辐射可调节供暖末端 Article

吴一凡, 孙弘历, 段梦凡, 林波荣, 赵恒昕, 刘兆鸿

《工程(英文)》 2023年 第20卷 第1期   页码 192-207 doi: 10.1016/j.eng.2021.09.019

摘要:

建筑供暖电气化是实现碳中和目标的有效途径。作为一种清洁和可持续的电气化供暖技术,空气源热泵被广泛应用于缺乏集中供暖的地区。然而,现有末端形式存在难以同时实现间歇性和舒适性,且作为主要构件尚未较好地与空气源热泵匹配等问题。因此,本研究提出了一种与空气源热泵结合的新型辐射可调节供暖末端,以实现电气化节能减碳、间歇性和更好的热舒适性。针对辐射供暖末端目前存在三个主要问题,分别是峰值供热量受限、可调节性受限以及难以与空气源热泵结合,本文通过改进末端结构设计(改进A~E)提供了有效解决方案。研究结果表明,新末端能够将峰值供热量提升23.6%,并为使用者提供从10.1%到30.9%的可调辐射比。在此基础上,巧妙地借助平板热管减少了原有直膨式辐射供暖末端的制冷剂管路长度,进而改善了供暖末端的稳定性(利于回油)、间歇性(降低热惯性)和安全性(降低制冷剂泄漏风险)。此外,本文基于新末端提出了一种新的分阶段运行策略,可进一步提升末端的可调节性。本研究可以为电气化供暖助力建筑低碳提供一定参考。

关键词: 新型供暖末端     空气源热泵     结构优化设计     峰值供热能力     快速可调节性     房间温度分布    

A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

Jinyang ZHENG, Yue ZHANG, Dongsheng HOU, Yinkang QIN, Weican GUO, Chuck ZHANG, Jianfeng SHI

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 535-545 doi: 10.1007/s11465-018-0515-9

摘要:

Polyethylene (PE) pipe, particularly high-density polyethylene (HDPE) pipe, has been successfully utilized to transport cooling water for both non-safety- and safety-related applications in nuclear power plant (NPP). Though ASME Code Case N755, which is the first code case related to NPP HDPE pipe, requires a thorough nondestructive examination (NDE) of HDPE joints. However, no executable regulations presently exist because of the lack of a feasible NDE technique for HDPE pipe in NPP. This work presents a review of current developments in NDE technology for both HDPE pipe in NPP with a diameter of less than 400 mm and that of a larger size. For the former category, phased array ultrasonic technique is proven effective for inspecting typical defects in HDPE pipe, and is thus used in Chinese national standards GB/T 29460 and GB/T 29461. A defect-recognition technique is developed based on pattern recognition, and a safety assessment principle is summa-rized from the database of destructive testing. On the other hand, recent research and practical studies reveal that in current ultrasonic-inspection technology, the absence of effective ultrasonic inspection for large size was lack of consideration of the viscoelasticity effect of PE on acoustic wave propagation in current ultrasonic inspection techno-logy. Furthermore, main technical problems were analyzed in the paper to achieve an effective ultrasonic test method in accordance to the safety and efficiency requirements of related regulations and standards. Finally, the development trend and challenges of NDE test technology for HDPE in NPP are discussed.

关键词: polyethylene pipe     nuclear power plant     ultrasonic inspection     nondestructive testing     safety assessment    

Calculation method of load distribution on pipe threaded connections under tension load

Shoujun CHEN, Lianxin GAO, Qi AN

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 241-248 doi: 10.1007/s11465-011-0219-x

摘要:

This paper presents a new calculation method that can calculate the load distribution on pipe threaded connections under tension load. On the basis of elastic mechanics, the new method was developed by analyzing each thread tooth, and a new deformation and covariant equation by making a mechanics analysis on each thread tooth was obtained. Compared with the traditional method proposed by the previous references, the new deformation and covariant equation could be used to describe the relation between the previous and the next thread tooth. By applying the new method on the sample of P-110S pipe threaded connection, the obtained results show that the load on thread tooth mainly concentrates on the four or five threads engaged and the middle teeth were not utilized well to bear the loads. The model offers a new way to calculate the loads carried on the thread teeth under tension load.

关键词: load distribution     calculation method     pipe threaded connections     tension load    

NC flame pipe cutting machine tool based on open architecture CNC system

Xiaogen NIE, Yanbing LIU

《机械工程前沿(英文)》 2009年 第4卷 第2期   页码 147-152 doi: 10.1007/s11465-009-0025-x

摘要: Based on the analysis of the principle and flame movement of a pipe cutting machine tool, a retrofit NC flame pipe cutting machine tool (NFPCM) that can meet the demands of cutting various pipes is proposed. The paper deals with the design and implementation of an open architecture CNC system for the NFPCM, many of whose aspects are similar to milling machines; however, different from their machining processes and control strategies. The paper emphasizes on the NC system structure and the method for directly creating the NC file according to the cutting type and parameters. Further, the paper develops the program and sets up the open and module NC system.

关键词: flame pipe cutting     flame incision tracks     CNC     open architecture CNC system    

Branch-pipe-routing approach for ships using improved genetic algorithm

Haiteng SUI,Wentie NIU

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 316-323 doi: 10.1007/s11465-016-0384-z

摘要:

Branch-pipe routing plays fundamental and critical roles in ship-pipe design. The branch-pipe-routing problem is a complex combinatorial optimization problem and is thus difficult to solve when depending only on human experts. A modified genetic-algorithm-based approach is proposed in this paper to solve this problem. The simplified layout space is first divided into three-dimensional (3D) grids to build its mathematical model. Branch pipes in layout space are regarded as a combination of several two-point pipes, and the pipe route between two connection points is generated using an improved maze algorithm. The coding of branch pipes is then defined, and the genetic operators are devised, especially the complete crossover strategy that greatly accelerates the convergence speed. Finally, simulation tests demonstrate the performance of proposed method.

关键词: branch pipe     ship industry     piping system     optimization algorithm    

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 742-753 doi: 10.1007/s11709-021-0732-x

摘要: This study investigates the use of glass fiber-reinforced polyester (GRP) pipe powder (PP) for improving the bearing capacity of sandy soils. After a series of direct share tests, the optimum PP addition for improving the bearing capacity of soils was found to be 12%. Then, using the optimum PP addition, the bearing capacity of the soil was estimated through a series of loading tests on a shallow foundation model placed in a test box. The bearing capacity of sandy soil was improved by up to 30.7%. The ratio of the depth of the PP-reinforced soil to the diameter of the foundation model (H/D) of 1.25 could sufficiently strengthen sandy soil when the optimum PP ratio was used. Microstructural analyses showed that the increase in the bearing capacity can be attributed to the chopped fibers in the PP and their multiaxial distribution in the soil. Besides improving the engineering properties of soils, using PP as an additive in soils would reduce the accumulation of the industrial waste, thus providing a twofold benefit.

关键词: shallow foundation     sandy soil     bearing capacity     soil improvement     pipe powder    

Dynamic prediction of moving trajectory in pipe jacking: GRU-based deep learning framework

《结构与土木工程前沿(英文)》   页码 994-1010 doi: 10.1007/s11709-023-0942-5

摘要: The moving trajectory of the pipe-jacking machine (PJM), which primarily determines the end quality of jacked tunnels, must be controlled strictly during the entire jacking process. Developing prediction models to support drivers in performing rectifications in advance can effectively avoid considerable trajectory deviations from the designed jacking axis. Hence, a gated recurrent unit (GRU)-based deep learning framework is proposed herein to dynamically predict the moving trajectory of the PJM. In this framework, operational data are first extracted from a data acquisition system; subsequently, they are preprocessed and used to establish GRU-based multivariate multistep-ahead direct prediction models. To verify the performance of the proposed framework, a case study of a large pipe-jacking project in Shanghai and comparisons with other conventional models (i.e., long short-term memory (LSTM) network and recurrent neural network (RNN)) are conducted. In addition, the effects of the activation function and input time-step length on the prediction performance of the proposed framework are investigated and discussed. The results show that the proposed framework can dynamically and precisely predict the PJM moving trajectory during the pipe-jacking process, with a minimum mean absolute error and root mean squared error (RMSE) of 0.1904 and 0.5011 mm, respectively. The RMSE of the GRU-based models is lower than those of the LSTM- and RNN-based models by 21.46% and 46.40% at the maximum, respectively. The proposed framework is expected to provide an effective decision support for moving trajectory control and serve as a foundation for the application of deep learning in the automatic control of pipe jacking.

关键词: dynamic prediction     moving trajectory     pipe jacking     GRU     deep learning    

Fictitious soil pile model for dynamic analysis of pipe piles under high-strain conditions

《结构与土木工程前沿(英文)》   页码 915-934 doi: 10.1007/s11709-023-0907-8

摘要: A fictitious soil pile (FSP) model is developed to simulate the behavior of pipe piles with soil plugs undergoing high-strain dynamic impact loading. The developed model simulates the base soil with a fictitious hollow pile fully filled with a soil plug extending at a cone angle from the pile toe to the bedrock. The friction on the outside and inside of the pile walls is distinguished using different shaft models, and the propagation of stress waves in the base soil and soil plug is considered. The motions of the pile−soil system are solved by discretizing them into spring-mass model based on the finite difference method. Comparisons of the predictions of the proposed model and conventional numerical models, as well as measurements for pipe piles in field tests subjected to impact loading, validate the accuracy of the proposed model. A parametric analysis is conducted to illustrate the influence of the model parameters on the pile dynamic response. Finally, the effective length of the FSP is proposed to approximate the affected soil zone below the pipe pile toe, and some guidance is provided for the selection of the model parameters.

关键词: fictitious soil pile     soil plug     pipe piles     high-strain dynamic analysis     one-dimensional wave theory     pile dynamics    

标题 作者 时间 类型 操作

A review of recent experimental investigations and theoretical analyses for pulsating heat pipes

Xin TANG, Lili SHA, Hua ZHANG, Yonglin JU

期刊论文

Experimental investigations on operating characteristics of a closed loop pulsating heat pipe

Yu WANG

期刊论文

Major applications of heat pipe and its advances coupled with sorption system: a review

Yang YU, Guoliang AN, Liwei WANG

期刊论文

Heat-spreading analysis of a heat sink base embedded with a heat pipe

B. V. BORGMEYER, H. B. MA,

期刊论文

A space power system of free piston Stirling generator based on potassium heat pipe

Mingqiang LIN, Jian MOU, Chunyun CHI, Guotong HONG, Panhe GE, Gu HU

期刊论文

Design and analyses of open-ended pipe piles in cohesionless soils

Yuan GUO,Xiong (Bill) YU

期刊论文

Group-based multiple pipe routing method for aero-engine focusing on parallel layout

期刊论文

基于平板热管的新型直膨式辐射可调节供暖末端

吴一凡, 孙弘历, 段梦凡, 林波荣, 赵恒昕, 刘兆鸿

期刊论文

A review of nondestructive examination technology for polyethylene pipe in nuclear power plant

Jinyang ZHENG, Yue ZHANG, Dongsheng HOU, Yinkang QIN, Weican GUO, Chuck ZHANG, Jianfeng SHI

期刊论文

Calculation method of load distribution on pipe threaded connections under tension load

Shoujun CHEN, Lianxin GAO, Qi AN

期刊论文

NC flame pipe cutting machine tool based on open architecture CNC system

Xiaogen NIE, Yanbing LIU

期刊论文

Branch-pipe-routing approach for ships using improved genetic algorithm

Haiteng SUI,Wentie NIU

期刊论文

Assessment of glass fiber-reinforced polyester pipe powder in soil improvement

期刊论文

Dynamic prediction of moving trajectory in pipe jacking: GRU-based deep learning framework

期刊论文

Fictitious soil pile model for dynamic analysis of pipe piles under high-strain conditions

期刊论文